В настоящее время культура клеток высших растений является альтернативным способом получения биомассы редких лекарственных растений. По сравнению с использованием обычных растений, применение технологий растительных клеток имеет ряд преимуществ, в частности:

  • возможность получения необходимых количеств качественного продукта с воспроизводимыми характеристиками в стерильных контролируемых условиях;
  • независимость от климатических и политических факторов;
  • возможность внесения изменений в структуру и биохимию тканей растений для получения новых веществ, не свойственных дикому растению
    удобство производства и очистки продукта.
Биореактор
Биореактор для биотехнологического выращивания
редких лекарственных растений Смотрите на видео

Биотехнология и культуры растительных клеток

Биотехнология — дисциплина, изучающая возможности использования живых организмов, их систем или продуктов их жизнедеятельности для решения технологических задач, а также возможности создания живых организмов с необходимыми свойствами.

Биотехнология основана на генетике, молекулярной биологии, биохимии, эмбриологии и клеточной биологии, а также прикладных дисциплинах — химической и информационной технологиях и робототехнике.

Культивирование клеток представляет собой процесс, посредством которого отдельные клетки (или единственная клетка) искусственно выращиваются в контролируемых условиях. На практике термин «культура клеток» относится в основном к выращиванию клеток, относящихся к одной ткани, полученных от многоклеточных эукариот, животных или растений. Историческое развитие технологии и методик выращивания культур клеток неразрывно связано с выращиванием тканевых культур и целых органов.

В основе культивирования растительных клеток лежит свойство тотипотентности, благодаря которому каждая клетка растения способна обеспечить развитие всего растения. Следует отметить, что в отличие от животной, растительная клетка предъявляет менее жесткие требования к условиям культивирования.

Изменяя условия (добавляя в состав питательной среды те или иные гормоны), можно вызвать дифференциацию недетерминированных клеток. Культура растительной ткани позволяет получить многочисленные популяции в сравнительно короткое время и в ограниченном пространстве.

Основным типом культивируемой растительной клетки является каллус. Каллусная ткань - один из видов клеточной дифференцировки, возникает путем неорганизованной пролиферации недифференцированных клеток органов растения. У растений в природе каллусная ткань возникает в исключительных обстоятельствах (например, при травмах) и функционирует непродолжительное время. Эта ткань защищает место ранения, может накапливать питательные вещества для анатомической регенерации или регенерации утраченного органа.

Нормальные клетки в культуре могут существовать в двух видах: в виде суспензии в жидкой питательной среде и на поверхности твердой питательной среды в виде каллуса.

Суспензионные культуры - отдельные клетки или группы клеток, выращиваемые во взвешенном состоянии в жидкой среде. Представляют собой относительно гомогенную популяцию клеток, которую легко подвергнуть воздействию химических веществ.

Для культивирования суспензий в производственных масштабах применяется аппаратура, разработанная для микробиологической промышленности, однако исследования последних лет показали, что растительные клетки в силу своих специфических особенностей требуют особых сосудов для культивирования. Клетки растений в десятки, сотни раз крупнее клеток бактерий и грибов, кроме того, их размеры меняются в процессе онтогенеза. Если в начале  роста культуры они мелкие и плотные, то в следующей фазе роста они сильно увеличиваются в размерах. Чем крупнее становится клетка, тем больше возрастает опасность ее механического повреждения в процессе перемешивания. В то же время клетки растений, крупные и тяжелые, требуют эффективного перемешивания. Оседание их приводит к появлению «мертвых» зон в сосудах, в которых происходит быстрое накопление и старение клеток. Устойчивость штамма к механическому стрессу является важным требованием к культуре и трудной задачей для исследователей.

Мягкое перемешивание и аэрацию обеспечивает пневматический способ перемешивания потоком сжатого стерильного воздуха, подаваемого в ферментер с восходящим током воздуха. К сожалению, и этот способ имеет свой недостаток, потому что в культуральной среде возникает избыток воздуха, приводящий к кислородному голоданию. От концентрации кислорода в среде зависят рост и вторичный метаболизм клеток.

Периодическое, или накопительное, культивирование — это самый простой способ выращивания клеток, являющийся пока традиционным. Суспензионные культуры используют для промышленного получения вторичных метаболитов. Вещества, продуцируемые растительными клетками, используются в медицине, парфюмерной промышленности, растениеводстве и других отраслях промышленности. К ним относятся: алкалоиды, терпеноиды, гликозиды, полифенолы, полисахариды, эфирные масла, пигменты, антиканцерогены (птотецин, харрингтонин), пептиды (ингибиторы фитовирусов). В настоящее время в разных странах около ста видов растений используется в биосинтетической промышленности для получения экономически важных веществ, среди них — женьшень, раувольфия змеиная, наперстянка шерстистая и пурпурная, диоскорея дельтовидная, воробейник, белладонна, паслен дольчатый, дурман обыкновенный, ландыш майский, клещевина, агава и др.

Получение вторичных метаболитов имеет свои особенности. Деление клеток, приводящее к увеличению клеточной биомассы, и синтез вторичных метаболитов разобщены во времени. Накопление вторичных метаболитов возрастает в фазе замедленного роста клеточной популяции и достигает максимума в стационарной фазе. Некоторые алкалоиды активно синтезируются в фазе максимальной митотической активности (экспоненциальный рост), что является исключением. Знание таких закономерностей позволяет регулировать процессы получения ценных веществ. Механизмы и условия, блокирующие активный рост клеток и клеточную пролиферацию, одновременно активируют ферменты вторичного метаболизма. Неспецифические стрессовые условия, воздействующие на клетки в конце экспоненциальной фазы, могут стимулировать переход к синтезу вторичных метаболитов и увеличивать их выход. Необходимо учитывать, что вопрос взаимодействия первичного и вторичного метаболизма, рассмотренный нами в упрощенном виде, намного сложнее.

В нашей компании для производства биомассы растений в промышленных масштабах используются биореакторы. В них механическим путем полупроточным методом происходит постоянное перемешивание недифференцированных клеток растений, чтобы они постоянно делились и не образовывали ткани и органы. Таким образом, клетки постоянно увеличивают свою биомассу и, соответственно, постоянно синтезируют полезные вещества, которые и используются при производстве наших препаратов.